Differential cytokine sensitivities of STAT5-dependent enhancers rely on Stat5 autoregulation

نویسندگان

  • Michaela Willi
  • Kyung Hyun Yoo
  • Chaochen Wang
  • Zlatko Trajanoski
  • Lothar Hennighausen
چکیده

Cytokines utilize the transcription factor STAT5 to control cell-specific genes at a larger scale than universal genes, with a mechanistic explanation yet to be supplied. Genome-wide studies have identified putative STAT5-based mammary-specific and universal enhancers, an opportunity to investigate mechanisms underlying their differential response to cytokines. We have now interrogated the integrity and function of both categories of regulatory elements using biological and genetic approaches. During lactation, STAT5 occupies mammary-specific and universal cytokine-responsive elements. Following lactation, prolactin levels decline and mammary-specific STAT5-dependent enhancers are decommissioned within 24 h, while universal regulatory complexes remain intact. These differential sensitivities are linked to STAT5 concentrations and the mammary-specific Stat5 autoregulatory enhancer. In its absence, mammary-specific enhancers, but not universal elements, fail to be fully established. Upon termination of lactation STAT5 binding to a subset of mammary enhancers is substituted by STAT3. No STAT3 binding was observed at the most sensitive STAT5 enhancers suggesting that upon hormone withdrawal their chromatin becomes inaccessible. Lastly, we demonstrate that the mammary-enriched transcription factors GR, ELF5 and NFIB associate with STAT5 at sites lacking bona fide binding motifs. This study provides, for the first time, molecular insight into the differential sensitivities of mammary-specific and universal cytokine-sensing enhancers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An autoregulatory enhancer controls mammary-specific STAT5 functions

Signal Transducers and Activators of Transcription (STATs) are principal transcription factors downstream of cytokine receptors. Although STAT5A is expressed in most tissues it remains to be understood why its premier, non-redundant functions are restricted to prolactin-induced mammary gland development and function. We report that the ubiquitously expressed Stat5a/b locus is subject to additio...

متن کامل

Evidence of STAT5 dependent and independent routes to CD8 memory formation and a preferential role for IL-7 over IL-15 in STAT5 activation

Interleukin (IL)-7 and IL-15 have non-redundant roles in promoting development of memory CD8(+) T cells. STAT5 is activated by receptors of both cytokines and has also been implicated as a requirement for generation of memory. To determine whether STAT5 activity was required for IL-7 and IL-15-mediated generation of memory, we expressed either wild type (WT) or constitutively active (CA) forms ...

متن کامل

CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation.

We searched for immediate early cytokine responsive genes and isolated a novel gene, CIS (Cytokine Inducible SH2 containing protein) that is induced in hematopoietic cells by a subset of cytokines including interleukin-2 (IL-2), IL-3, and erythropoietin (EPO). The mutant IL-2 receptor that fails to activate STAT5 could not induce CIS, suggesting that STAT5 is involved in the cytokine-inducible ...

متن کامل

SHD1 is a novel cytokine-inducible, negative feedback regulator of STAT5-dependent transcription.

STAT5 is a critical mediator of a variety of cytokine signaling whose transcriptional activity is regulated by associating with various proteins. During a search for STAT5-interacting proteins, we identified SHD1, a mammalian homologue of yeast gene Sac3, as a potential interacter. SHD1 was localized in the nucleus, and induced by cytokines that activate STAT5, such as erythropoietin, interleuk...

متن کامل

STAT5 activation is required for interleukin-9-dependent growth and transformation of lymphoid cells.

Interleukin-9 (IL-9) is a growth factor for T cells and various hematopoietic and lymphoid tumor cells. IL-9 signaling involves activation of Janus kinase (JAK)1 and JAK3 kinases, and signal transducer and activator of transcription (STAT)1, STAT3 and STAT5. Using a dominant negative form of STAT5 (STAT5delta), we demonstrated that this factor is an important mediator of IL-9-dependent Ba/F3 ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2016